Presentation Outline

- Objective
- Proposed model diagram
- Multiobjective solver
 - First approach
 - Search / Evaluation
 - Software
- Metrics
Objective: Pareto Surface of Solutions

- Cost
- Resiliency
- Sustainability
Proposed Model Diagram

- Policies
- Forecasts
- Technologies
- Scenarios

Multiobjective solver

- Analysis
- Visualization
- Interdependencies
- Contingencies
From data to model
Proposed Model Diagram

Current system

| Database |
| Data |
| Model generator |

Projections

Multiobjective solver

Master Problem
Investment
Storage

Year 1 Flows
Year 2 Flows
Year 40 Flows
Multiobjective Solver

- **Multiobjective algorithm**: Select front of solutions, Generate new generation

 - **Cost Minimization**
 - Investment Portfolio
 - Sustainability Metrics
 - Resiliency Metrics

 - Search and selection

 - Evaluation (fitness functions)
Interaction search-evaluation

- String of characters

 □ □ □ □ □...□ □ □ □...□ □ □ □

 - Investment
 - X: Investment not allowed
 - 0: Investment allowed, not enforced
 - 1: Small investment enforced
 - 2: Medium investment enforced

 - Tax / Subsidies
 - Carbon tax, “use of depletable resource” tax

 - Limit on emissions
Why?

- Concern with minimizing cost
 - Bias in the solution towards cost

- Enforcing investment
 - Reinforce weakest links: resiliency ▲
 - “Cleaner” alternatives available: sustainability ▲

- Tax, subsidies, limits
 - Enforce the use of capacity made available
Software

- Search & Selection: off the shelf (?)
 - Find and test different alternatives
 - PISA: ready to use algorithms

- Feedback from optimization
 - Weak links, economic opportunities, sustainable links
Proposed metrics (I)

- **Cost**: Operational + Investment

- **Sustainability**
 - Emissions
 - Rate of consumption of depletable resources
 - Market share for renewables
 - Use of water
Proposed metrics (II)

- Resiliency
 - What to measure?
 - Increase in cost
 - Increase in prices
 - Demand not met
 - Under what conditions?
 - Weight effect with probability
 - Predetermined worst-case-scenarios
 - Interdiction: find maximum damage wrt to probability