A decentralized resilient mixed-energy infrastructure (L^3) model of America

Jinxu Ding Arun Somani

Department of Electrical and Computer Engineering
Iowa State University

Ames Iowa, April 14 2009
Outline

1. Goal
2. Motivation
3. Analysis of non-renewable energy
4. Analysis of renewable energy
5. Analysis of mixed-energy infrastructure
6. Analysis of solutions to the problems of L^3 model
7. The Model of the L^3 mixed-energy infrastructure
Propose a mixed-energy model to solve the problems in the current energy infrastructure of America.
RPS

According to the RPS standards, the percentage of renewable energy in the total energy consumption should be more than 15% by 2015, 25% by 2025.

<table>
<thead>
<tr>
<th>stimulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>The economic stimulus package has $65B budget for improving energy efficiency and developing renewable energy technology.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>new jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>The development of renewable energy sources can create new jobs to help recover from financial crisis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>resilient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make the current energy infrastructure more resilient (recover readily from extraordinary events such as natural disaster, system failure, political reasons).</td>
</tr>
</tbody>
</table>
RPS

According to the RPS standards, the percentage of renewable energy in the total energy consumption should be more than 15% by 2015, 25% by 2025.

stimulus

The economic stimulus package has $65B budget for improving energy efficiency and developing renewable energy technology.

new jobs

The development of renewable energy sources can create new jobs to help recover from financial crisis.

resilient

Make the current energy infrastructure more resilient (recover readily from extraordinary events such as natural disaster, system failure, political reasons).
According to the RPS standards, the percentage of renewable energy in the total energy consumption should be more than 15% by 2015, 25% by 2025.

The economic stimulus package has $65B budget for improving energy efficiency and developing renewable energy technology.

The development of renewable energy sources can create new jobs to help recover from financial crisis.

Make the current energy infrastructure more resilient (recover readily from extraordinary events such as natural disaster, system failure, political reasons).
RPS

According to the RPS standards, the percentage of renewable energy in the total energy consumption should be more than 15% by 2015, 25% by 2025.

stimulus

The economic stimulus package has $65B budget for improving energy efficiency and developing renewable energy technology.

new jobs

The development of renewable energy sources can create new jobs to help recover from financial crisis.

resilient

Make the current energy infrastructure more resilient (recover readily from extraordinary events such as natural disaster, system failure, political reasons).
The traditional non-renewable energy infrastructure is highly-centralized and heavily depends on the crude-oil, natural gas and coal.

Advantage
- Cheap
- Can be easily transported for demands in different places.

Disadvantages
- Pollution
- Dependence on the foreign countries with rich fossil energy.
- Limited amount (will be used up in future)
The traditional non-renewable energy infrastructure is highly-centralized and heavily depends on the crude-oil, natural gas and coal.

Advantage
- Cheap
- Can be easily transported for demands in different places.

Disadvantages
- Pollution
- Dependence on the foreign countries with rich fossil energy.
- Limited amount (will be used up in future)
non-renewable energy

The traditional non-renewable energy infrastructure is highly-centralized and heavily depends on the crude-oil, natural gas and coal.

Advantage

- Cheap
- Can be easily transported for demands in different places.

Disadvantages

- Pollution
- Dependence on the foreign countries with rich fossil energy.
- Limited amount (will be used up in future)
non-renewable energy

The traditional non-renewable energy infrastructure is highly-centralized and heavily depends on the crude-oil, natural gas and coal.

Advantage

- Cheap
- Can be easily transported for demands in different places.

Disadvantages

- Pollution
- Dependence on the foreign countries with rich fossil energy.
- Limited amount (will be used up in future)
non-renewable energy

The traditional non-renewable energy infrastructure is highly-centralized and heavily depends on the crude-oil, natural gas and coal.

Advantage

- Cheap
- Can be easily transported for demands in different places.

Disadvantages

- Pollution
- Dependence on the foreign countries with rich fossil energy.
- Limited amount (will be used up in future)
non-renewable energy

The traditional non-renewable energy infrastructure is highly-centralized and heavily depends on the crude-oil, natural gas and coal.

Advantage

- Cheap
- Can be easily transported for demands in different places.

Disadvantages

- Pollution
- Dependence on the foreign countries with rich fossil energy.
- Limited amount (will be used up in future)
non-renewable energy

The traditional non-renewable energy infrastructure is highly-centralized and heavily depends on the crude-oil, natural gas and coal.

Advantage

- Cheap
- Can be easily transported for demands in different places.

Disadvantages

- Pollution
- Dependence on the foreign countries with rich fossil energy.
- Limited amount (will be used up in future)
renewable energy

- wind, biomass, biofuel, solar, geothermal, tidal, hydropower, methane, crop waste, sewage treatment facility.

Advantage

- **Clean**
 - Diversified forms, which can reduce the risk of dependency on only few forms of non-renewable energy sources in the cases that they fail. (natural disasters: tornado, flooding, wild fire, mudslides, hurricane)
 - Improve energy security. Renewable energy can be used as backup energy in the case that major non-renewable energy can not work.
 - Domestic availability to reduce the dependency on foreign countries.

Disadvantage

- Expensive
- Difficult to deliver in long-distance
- Regions without rich renewable energy sources may not get benefits.
Renewable energy

Wind, biomass, biofuel, solar, geothermal, tidal, hydropower, methane, crop waste, sewage treatment facility.

Advantage

- **Clean**
- Diversified forms, which can reduce the risk of dependency on only few forms of non-renewable energy sources in the cases that they fail. (natural disasters: tornado, flooding, wild fire, mudslides, hurricane)
- Improve energy security. Renewable energy can be used as backup energy in the case that major non-renewable energy can not work.
- Domestic availability to reduce the dependency on foreign countries.

Disadvantage

- Expensive
- Difficult to deliver in long-distance
- Regions without rich renewable energy sources may not get benefits.
renewable energy

wind, biomass, biofuel, solar, geothermal, tidal, hydropower, methane, crop waste, sewage treatment facility.

Advantage

- Clean
- Diversified forms, which can reduce the risk of dependency on only few forms of non-renewable energy sources in the cases that they fail. (natural disasters: tornado, flooding, wild fire, mudslides, hurricane)
- Improve energy security. Renewable energy can be used as backup energy in the case that major non-renewable energy can not work.
- Domestic availability to reduce the dependency on foreign countries.

Disadvantage

- Expensive
- Difficult to deliver in long-distance
- Regions without rich renewable energy sources may not get benefits.
Analysis of renewable energy

Renewable energy
- wind, biomass, biofuel, solar, geothermal, tidal, hydropower, methane, crop waste, sewage treatment facility.

Advantage
- Clean
- Diversified forms, which can reduce the risk of dependency on only few forms of non-renewable energy sources in the cases that they fail. (natural disasters: tornado, flooding, wild fire, mudslides, hurricane)
- Improve energy security. Renewable energy can be used as backup energy in the case that major non-renewable energy can not work.
- Domestic availability to reduce the dependency on foreign countries.

Disadvantage
- Expensive
- Difficult to deliver in long-distance
- Regions without rich renewable energy sources may not get benefits.
renewable energy

wind, biomass, biofuel, solar, geothermal, tidal, hydropower, methane, crop waste, sewage treatment facility.

Advantage

- **Clean**
- Diversified forms, which can reduce the risk of dependency on only few forms of non-renewable energy sources in the cases that they fail. (natural disasters: tornado, flooding, wild fire, mudslides, hurricane)
- Improve energy security. Renewable energy can be used as backup energy in the case that major non-renewable energy can not work.
- Domestic availability to reduce the dependency on foreign countries.

Disadvantage

- **Expensive**
- Difficult to deliver in long-distance
- Regions without rich renewable energy sources may not get benefits.
renewable energy

wind, biomass, biofuel, solar, geothermal, tidal, hydropower, methane, crop waste, sewage treatment facility.

Advantage

- Clean
- Diversified forms, which can reduce the risk of dependency on only few forms of non-renewable energy sources in the cases that they fail. (natural disasters: tornado, flooding, wild fire, mudslides, hurricane)
- Improve energy security. Renewable energy can be used as backup energy in the case that major non-renewable energy can not work.
- Domestic availability to reduce the dependency on foreign countries.

Disadvantage

- Expensive
- Difficult to deliver in long-distance
- Regions without rich renewable energy sources may not get benefits.
renewable energy
wind, biomass, biofuel, solar, geothermal, tidal, hydropower, methane, crop waste, sewage treatment facility.

Advantage

- Clean
- Diversified forms, which can reduce the risk of dependency on only few forms of non-renewable energy sources in the cases that they fail. (natural disasters: tornado, flooding, wild fire, mudslides, hurricane)
- Improve energy security. Renewable energy can be used as backup energy in the case that major non-renewable energy can not work.
- Domestic availability to reduce the dependency on foreign countries.

Disadvantage

- Expensive
- Difficult to deliver in long-distance
- Regions without rich renewable energy sources may not get benefits.
In order to take use of the advantages and remove disadvantages, we propose the decentralized resilient mixed-energy infrastructure.

- Distinct regions take full use of their own local renewable-energy sources.
- Develop the technology to generate electricity, heating and biofuel locally.
- Consume the renewable energy locally.
- Create new jobs for the local communities. Example: North Dakota has rich wind energy. Nevada has rich geothermal energy.
In order to take use of the advantages and remove disadvantages, we propose the decentralized resilient mixed-energy infrastructure.

- Distinct regions take full use of their own local renewable-energy sources.
 - Develop the technology to generate electricity, heating and biofuel locally.
 - Consume the renewable energy locally.
 - Create new jobs for the local communities. Example: North Dakota has rich wind energy. Nevada has rich geothermal energy.
In order to take use of the advantages and remove disadvantages, we propose the decentralized resilient mixed-energy infrastructure.

- Distinct regions take full use of their own local renewable-energy sources.
 - Develop the technology to generate electricity, heating and biofuel locally.
 - Consume the renewable energy locally.
 - Create new jobs for the local communities. Example: North Dakota has rich wind energy. Nevada has rich geothermal energy.
In order to take use of the advantages and remove disadvantages, we propose the decentralized resilient mixed-energy infrastructure.

decentralized

- Distinct regions take full use of their own local renewable-energy sources.
 - Develop the technology to generate electricity, heating and biofuel locally.
 - Consume the renewable energy locally.
 - Create new jobs for the local communities. Example: North Dakota has rich wind energy. Nevada has rich geothermal energy.
In order to take use of the advantages and remove disadvantages, we propose the decentralized resilient mixed-energy infrastructure. Distinct regions take full use of their own local renewable-energy sources.

- Develop the technology to generate electricity, heating and biofuel locally.
- Consume the renewable energy locally.
- Create new jobs for the local communities. Example: North Dakota has rich wind energy. Nevada has rich geothermal energy.
mixed-energy

- In near future (within 40 years), it is impossible to replace non-renewable energy with renewable energy completely.
- Make them be complementary with each other.
- In regions without rich renewable energy sources, the non-renewable energy has to be used under stricter standards (such as cleaner).

Resilient

- More diversified mixed-energy forms to reduce the risk of depending on only fossil energy.
mixed-energy

- In near future (within 40 years), it is impossible to replace non-renewable energy with renewable energy completely.
- Make them be complementary with each other.
- In regions without rich renewable energy sources, the non-renewable energy has to be used under stricter standards (such as cleaner).

Resilient

- More diversified mixed-energy forms to reduce the risk of depending on only fossil energy.
mixed-energy

- In near feature (within 40 years), it is impossible to replace non-renewable energy with renewable energy completely.
- Make them be complementary with each other.
- In regions without rich renewable energy sources, the non-renewable energy has to be used under stricter standards (such as cleaner).

Resilient

- More diversified mixed-energy forms to reduce the risk of depending on only fossil energy.
mixed-energy

- In the near future (within 40 years), it is impossible to replace non-renewable energy with renewable energy completely.
- Make them be complementary with each other.
- In regions without rich renewable energy sources, the non-renewable energy has to be used under stricter standards (such as cleaner).

More diversified mixed-energy forms to reduce the risk of depending on only fossil energy.
In the near future (within 40 years), it is impossible to replace non-renewable energy with renewable energy completely. Make them be complementary with each other. In regions without rich renewable energy sources, the non-renewable energy has to be used under stricter standards (such as cleaner).

More diversified mixed-energy forms to reduce the risk of depending on only fossil energy.
Analysis of mixed-energy infrastructure

Mixed-energy

- In near feature (within 40 years), it is impossible to replace non-renewable energy with renewable energy completely.
- Make them be complementary with each other.
- In regions without rich renewable energy sources, the non-renewable energy has to be used under stricter standards (such as cleaner).

Resilient

- More diversified mixed-energy forms to reduce the risk of depending on only fossil energy.
The decentralized resilient mixed-energy infrastructure can be briefly summarized as L^3 principles.

- Generate renewable energy **Locally**;
- Consume renewable energy **Locally**;
- **Local** people get benefits from new jobs, and clean energy.
The decentralized resilient mixed-energy infrastructure can be briefly summarized as L^3 principles.

- Generate renewable energy Locally;
- Consume renewable energy Locally;
- Local people get benefits from new jobs, and clean energy.
The decentralized resilient mixed-energy infrastructure can be briefly summarized as L^3 principles.

- Generate renewable energy **Locally**;
- Consume renewable energy **Locally**;
- **Local** people get benefits from new jobs, and clean energy.
The decentralized resilient mixed-energy infrastructure can be briefly summarized as L^3 principles.

- Generate renewable energy **Locally**;
- Consume renewable energy **Locally**;
- Local people get benefits from new jobs, and clean energy.
The decentralized resilient mixed-energy infrastructure can be briefly summarized as L^3 principles.

- Generate renewable energy **Locally**;
- Consume renewable energy **Locally**;
- **Local** people get benefits from new jobs, and clean energy.
Analysis of L^3 resilient decentralized resilient mixed-energy infrastructure

Advantage of L^3

- Diversified energy forms
 - reduce risks from natural disasters, system failure, political reasons
 - increase the resilience (self-recover, lower price perturbation) of the overall energy infrastructure.
- Avoid the cost from long-distance transmission and transportation systems.
- Local new jobs can reduce the transportation fuel consumption.
- Each region is self-reliant.
Analysis of L^3 resilient decentralized resilient mixed-energy infrastructure

Advantage of L^3

- Diversified energy forms
 - reduce risks from natural disasters, system failure, political reasons
 - increase the resilience (self-recover, lower price perturbation) of the overall energy infrastructure.
- Avoid the cost from long-distance transmission and transportation systems.
- Local new jobs can reduce the transportation fuel consumption.
- Each region is self-reliant.
Analysis of L^3 resilient decentralized resilient mixed-energy infrastructure

Advantage of L^3

- Diversified energy forms
 - reduce risks from natural disasters, system failure, political reasons
 - increase the resilience (self-recover, lower price perturbation) of the overall energy infrastructure.
- Avoid the cost from long-distance transmission and transportation systems.
- Local new jobs can reduce the transportation fuel consumption.
- Each region is self-reliant.
Analysis of L^3 resilient decentralized resilient mixed-energy infrastructure

Advantage of L^3

- Diversified energy forms
 - reduce risks from natural disasters, system failure, political reasons
 - increase the resilience (self-recover, lower price perturbation) of the overall energy infrastructure.
- Avoid the cost from long-distance transmission and transportation systems.
- Local new jobs can reduce the transportation fuel consumption.
- Each region is self-reliant.
Analysis of L^3 resilient decentralized resilient mixed-energy infrastructure

Advantage of L^3

- **Diversified energy forms**
 - reduce risks from natural disasters, system failure, political reasons
 - increase the resilience (self-recover, lower price perturbation) of the overall energy infrastructure.

- **Avoid the cost from long-distance transmission and transportation systems.**
 - Local new jobs can reduce the transportation fuel consumption.
 - Each region is self-reliant.
Advantage of L^3

- Diversified energy forms
 - reduce risks from natural disasters, system failure, political reasons
 - increase the resilience (self-recover, lower price perturbation) of the overall energy infrastructure.
- Avoid the cost from long-distance transmission and transportation systems.
- Local new jobs can reduce the transportation fuel consumption.
- Each region is self-reliant.
Analysis of L^3 resilient decentralized resilient mixed-energy infrastructure

Advantage of L^3

- Diversified energy forms
 - reduce risks from natural disasters, system failure, political reasons
 - increase the resilience (self-recover, lower price perturbation) of the overall energy infrastructure.
- Avoid the cost from long-distance transmission and transportation systems.
- Local new jobs can reduce the transportation fuel consumption.
- Each region is self-reliant.
Disadvantage of L^3

- The initial cost of renewable energy technology may be more expensive than non-renewable energy.
 - Equipment, plants, civil constructions, low outcome-price ratio, operation cost, employee training.
- Local protectionism in the regions with rich renewable energy sources.
- The regions without rich renewable energy sources may be behind of the main stream economic development.
Disadvantage of L^3

- The initial cost of renewable energy technology may be more expensive than non-renewable energy.
 - Equipment, plants, civil constructions, low outcome-price ratio, operation cost, employee training.
- Local protectionism in the regions with rich renewable energy sources.
- The regions without rich renewable energy sources may be behind of the main stream economic development.
Disadvantage of L^3

- The initial cost of renewable energy technology may be more expensive than non-renewable energy.
 - Equipment, plants, civil constructions, low outcome-price ratio, operation cost, employee training.
- Local protectionism in the regions with rich renewable energy sources.
- The regions without rich renewable energy sources may be behind of the mainstream economic development.
Disadvantage of L^3

- The initial cost of renewable energy technology may be more expensive than non-renewable energy.
 - Equipment, plants, civil constructions, low outcome-price ratio, operation cost, employee training.
- Local protectionism in the regions with rich renewable energy sources.
- The regions without rich renewable energy sources may be behind of the mainstream economic development.
The initial cost of renewable energy technology may be more expensive than non-renewable energy.

- Equipment, plants, civil constructions, low outcome-price ratio, operation cost, employee training.

Local protectionism in the regions with rich renewable energy sources.

The regions without rich renewable energy sources may be behind of the mainstream economic development.
Solutions to the Disadvantages

Exercise

Small-scale trials in some regions with rich renewable energy sources. The experiences and lessons can be helpful to correct the overall plan and policy.

Part of the profit made from the renewable energy is used to

- Improve renewable energy technology to make them cheaper.
- Improve non-renewable energy technology to make them cleaner.
Solutions to the Disadvantages

Exercise

Small-scale trials in some regions with rich renewable energy sources. The experiences and lessons can be helpful to correct the overall plan and policy.

Part of the profit made from the renewable energy is used to

- Improve renewable energy technology to make them cheaper.
- Improve non-renewable energy technology to make them cleaner.
Solutions to the Disadvantages

Exercise
Small-scale trials in some regions with rich renewable energy sources. The experiences and lessons can be helpful to correct the overall plan and policy.

Part of the profit made from the renewable energy is used to

- Improve renewable energy technology to make them cheaper.
- Improve non-renewable energy technology to make them cleaner.
Analysis of solutions to the problems of L^3 model

Solutions to the Disadvantages

Exercise

Small-scale trials in some regions with rich renewable energy sources. The experiences and lessons can be helpful to correct the overall plan and policy.

Part of the profit made from the renewable energy is used to

- Improve renewable energy technology to make them cheaper.
- Improve non-renewable energy technology to make them cleaner.
Solutions to the Disadvantages

cap-and-trade

the buyer is paying a charge for polluting and the seller is rewarded for having reduced emissions by more than was needed.

- The states(regions) with rich renewable-energy can reduce pollution at the low cost.
- The high cost for the states or regions without rich renewable energy may reduce the energy supply.
- Cause higher price of non-renewable energy.
- This can stimulate the surrounding areas to provide them with low-price renewable-energy.
Solutions to the Disadvantages

cap-and-trade

the buyer is paying a charge for polluting and the seller is rewarded for having reduced emissions by more than was needed.

- The states(regions) with rich renewable-energy can reduce pollution at the low cost.
- The high cost for the states or regions without rich renewable energy may reduce the energy supply.
- Cause higher price of non-renewable energy.
- This can stimulate the surrounding areas to provide them with low-price renewable-energy.
Solutions to the Disadvantages

cap-and-trade

the buyer is paying a charge for polluting and the seller is rewarded for having reduced emissions by more than was needed.

- The states(regions) with rich renewable-energy can reduce pollution at the low cost.
- The high cost for the states or regions without rich renewable energy may reduce the energy supply.
- Cause higher price of non-renewable energy.
- This can stimulate the surrounding areas to provide them with low-price renewable-energy.
Solutions to the Disadvantages

cap-and-trade

The buyer is paying a charge for polluting and the seller is rewarded for having reduced emissions by more than was needed.

- The states (regions) with rich renewable-energy can reduce pollution at the low cost.
- The high cost for the states or regions without rich renewable energy may reduce the energy supply.
- Cause higher price of non-renewable energy.
- This can stimulate the surrounding areas to provide them with low-price renewable-energy.
Solutions to the Disadvantages

cap-and-trade

the buyer is paying a charge for polluting and the seller is rewarded for having reduced emissions by more than was needed.

- The states(regions) with rich renewable-energy can reduce pollution at the low cost.
- The high cost for the states or regions without rich renewable energy may reduce the energy supply.
- Cause higher price of non-renewable energy.
- This can stimulate the surrounding areas to provide them with low-price renewable-energy.
Solutions to the Disadvantages

- This can stimulate the investment on the renewable energy technology.
- Lead the energy-market to the prosperity along the correct direction.
Solutions to the Disadvantages

- This can stimulate the investment on the renewable energy technology.
- lead the energy-market to the prosperity along the correct direction.
The Model of the L^3 mixed-energy infrastructure

the L^3 model

\[
\begin{align*}
& \text{max} \quad \text{Economic benefits + Social benefits} \\
& s.t. \quad \text{RPS policy} \\
& \quad \text{Stimulus package budget}
\end{align*}
\]

Decision variables
- Decision variables: investment (nation-level, state-level, region-level).

Economic benefits
- Increase profits, reduce cost (investment, operation).

Social benefits
- Protect natural environment, create new jobs.
The \(L^3 \) model

\[
\text{max} \quad \text{Economic benefits + Social benefits} \\
\text{s.t.} \quad \text{RPS policy} \\
\text{Stimulus package budget}
\]

Decision variables

- Decision variables: investment (nation-level, state-level, region-level).

Economic benefits

- increase profits, reduce cost (investment, operation).

Social benefits

- protect natural environment, create new jobs.
The L^3 Model

Maximize: $\text{Economic benefits} + \text{Social benefits}$

Subject to:
- RPS policy
- Stimulus package budget

Decision Variables
- Decision variables: investment (nation-level, state-level, region-level).

Economic Benefits
- Increase profits, reduce cost (investment, operation).

Social Benefits
- Protect natural environment, create new jobs.
The L^3 model

\[
\begin{align*}
\text{max} & \quad \text{Economic benefits} + \text{Social benefits} \\
\text{s.t.} & \quad \text{RPS policy} \\
& \quad \text{Stimulus package budget}
\end{align*}
\]

Decision variables
- Decision variables: investment (nation-level, state-level, region-level).

Economic benefits
- increase profits, reduce cost (investment, operation).

Social benefits
- protect natural environment, create new jobs.
Economic benefits: revenue and cost

Revenue
the amount charged for delivery of goods or services in the ordinary activities of a business over a stated period.

Opportunity cost
is the return that a business entity’s resources could have earned elsewhere in next most valuable use.

Explicit cost
observable, measurable expenses such as the money cost of production inputs and the interest cost of renting (borrowing) capital.
Economic benefits: revenue and cost

Revenue
the amount charged for delivery of goods or services in the ordinary activities of a business over a stated period.

Opportunity cost
is the return that a business entity’s resources could have earned elsewhere in next most valuable use.

Explicit cost
observable, measurable expenses such as the money cost of production inputs and the interest cost of renting (borrowing) capital.
The Model of the \(L^3 \) mixed-energy infrastructure

Economic benefits: revenue and cost

Revenue

the amount charged for delivery of goods or services in the ordinary activities of a business over a stated period.

Opportunity cost

is the return that a business entity’s resources could have earned elsewhere in next most valuable use.

Explicit cost

observable, measurable expenses such as the money cost of production inputs and the interest cost of renting (borrowing) capital.
Implicit cost

- the opportunity cost to a business entity of using its own capital.
- the opportunity cost of the time and financial resources of the business entity’s owners.
Economic benefits: revenue and cost

Implicit cost

- the opportunity cost to a business entity of using its own capital.
- the opportunity cost of the time and financial resources of the business entity’s owners.
Economic benefits: revenue and cost

revenue of L^3 model

Sales of electricity, heating and transportation fuel generated by renewable and non-renewable energy.

Total Explicit Cost of L^3 model

- Equipment, plant building, transmission/control software.
- Electricity, heating, transportation fuel.
- Employee salary paid.
- Interest paid on borrowed funds.
Economic benefits: revenue and cost

revenue of L^3 model

Sales of electricity, heating and transportation fuel generated by renewable and non-renewable energy.

Total Explicit Cost of L^3 model

- Equipment, plant building, transmission/control software.
- Electricity, heating, transportation fuel.
- Employee salary paid.
- Interest paid on borrowed funds.
The Model of the L^3 mixed-energy infrastructure

Economic benefits: revenue and cost

Revenue of L^3 model
Sales of electricity, heating and transportation fuel generated by renewable and non-renewable energy.

Total Explicit Cost of L^3 model
- Equipment, plant building, transmission/control software.
- Electricity, heating, transportation fuel.
- Employee salary paid.
- Interest paid on borrowed funds.
Economic benefits: revenue and cost

Revenue of L^3 model

Sales of electricity, heating and transportation fuel generated by renewable and non-renewable energy.

Total Explicit Cost of L^3 model

- Equipment, plant building, transmission/control software.
- Electricity, heating, transportation fuel.
- Employee salary paid.
- Interest paid on borrowed funds.
Economic benefits: revenue and cost

revenue of L^3 model

Sales of electricity, heating and transportation fuel generated by renewable and non-renewable energy.

Total Explicit Cost of L^3 model

- Equipment, plant building, transmission/control software.
- Electricity, heating, transportation fuel.
- Employee salary paid.
- Interest paid on borrowed funds.
The Model of the L^3 mixed-energy infrastructure

Economic benefits: revenue and cost

Total Implicit Cost of L^3 model

- Forgone salary.
- Forgone interest.
- Economic depreciation on building or equipment.
- Normal profit (the opportunity cost of owners’ entrepreneurial expertise.)
Economic benefits: revenue and cost

Total Implicit Cost of L^3 model

- Forgone salary.
- Forgone interest.
- Economic depreciation on building or equipment.
- Normal profit (the opportunity cost of owners’ entrepreneurial expertise.)
Economic benefits: revenue and cost

Total Implicit Cost of L^3 model

- Forgone salary.
- Forgone interest.
- Economic depreciation on building or equipment.
- Normal profit (the opportunity cost of owners’ entrepreneurial expertise.)
Economic benefits: revenue and cost

Total Implicit Cost of L^3 model

- Forgone salary.
- Forgone interest.
- Economic depreciation on building or equipment.
- Normal profit (the opportunity cost of owners’ entrepreneurial expertise.)
Social benefits of L^3 model

Clean natural environment

Resolve economic recession

- New jobs that can increase consumers’ demand for services and goods.
- This increase can help resolve economic recession, in which the short-run equilibrium real GDP is less than the full employment GDP.
Social benefits of L^3 model

- Clean natural environment

- Resolve economic recession
 - New jobs that can increase consumers’ demand for services and goods.
 - This increasement can help resolve economic recession, in which the short-run equilibrium real GDP is less than the full employment GDP.
Social benefits of L^3 model

- Clean natural environment

- Resolve economic recession
 - New jobs that can increase consumers’ demand for services and goods.
 - This increase can help resolve economic recession, in which the short-run equilibrium real GDP is less than the full employment GDP.
The Model of the L^3 mixed-energy infrastructure

Question and comments.
Question and comments.