Light-duty Plug-in Electric Vehicles in NETPLAN

Di Wu Dr. Dionysios Aliprantis Dr. Konstantina Gkritza

IOWA STATE UNIVERSITY

NETSCORE21
Research Project

Apr.6, 2011
Outline of Topics

1. Objective
2. NETPLAN formulation
3. Electric power & energy consumption from PEVs
4. Modeling methods
Objective

Transportation demand:

- freight
- passenger
 - personal light-duty vehicles
 - airplanes
 - trains
 - others

Detailed method, discussion, and relevant data can be found at http://home.eng.iastate.edu/~dwu/PEV_NETPLAN.html
\[
\text{min} \ \{ \text{CostOp}^E + \text{CostInv}^E + \text{CostOp}^T + \text{CostFleetInv}^T + \text{CostInfInv}^T \} \\
\text{subject to:}
\]
- Meet energy demand at every node
 \[
 \sum_t \eta(i,j) e(i,j)(t) - \sum_t e_{\text{in}}(i,j)(t) = d_j^E(t) + d_j^{\text{ET}}(t) \quad (1b)
 \]
- Energy flow lower and upper bounds
 \[
 l_b e(i,j)(t) \leq e(i,j)(t) \leq u_b e(i,j)(t) \Delta t + \sum_{z=0}^{t} e_{\text{inf}}(i,j)(z) \Delta z \quad (1c)
 \]
- DC power flow equations
 \[
 e(i,j)(t) = b(i,j) \left(\theta_i(t) - \theta_j(t) \right), \quad \forall (i,j) \in A^E_{DC} \quad (1d)
 \]
- Transportation demand for non-energy commodities
 \[
 \sum_{m} f_{i,j,k,m}(t) = d_{i,j,k}(t), \quad k \in K \setminus K_c \quad (1e)
 \]
- Transportation demand for energy commodities
 \[
 \sum_{m} f_{i,j,k,m}(t) = \text{heatContent}^{-1}(t) e(n_{i,j,k},n_{i,j,k})(t), \quad k \in K_c \quad (1f)
 \]
- Fleet upper bound for transportation flows
 \[
 \sum_k f_{i,j,k,m}(t) \leq \text{ubFleet}_{i,j,m}(t) \Delta t + \sum_{z=0}^{t} \text{fleet}_{i,j,m}(z) \Delta z \quad (1g)
 \]
- Infrastructure upper bound for transportation flows
 \[
 \sum_k \sum_{m \in M_i} f_{i,j,k,m}(t) \leq \text{ubInf}_{i,j,l}(t) \Delta t + \sum_{z=0}^{t} \text{inf}_{i,j,l}(z) \Delta z \quad (1h)
 \]

where:
- \(\text{CostOp}^E = \sum_t \sum_{(i,j)} (1 + r)^{-t} \text{costOp}^E_{i,j}(t) e_{i,j}(t) \quad (1i) \)
- \(\text{CostInv}^E = \sum_t \sum_{(i,j)} (1 + r)^{-t} \text{costInv}^E_{i,j}(t) e_{i,j}(t) \quad (1j) \)
- \(\text{CostOp}^T = \sum_t \sum_{(i,j,k,m)} (1 + r)^{-t} \text{costOp}^T_{i,j,k,m}(t) f_{i,j,k,m}(t) \quad (1k) \)
- \(\text{CostFleetInv}^T = \sum_t \sum_{(i,j,m)} (1 + r)^{-t} \text{costFleetInv}^T_{i,j,m}(t) \quad (1l) \)
- Energy flow lower and upper bounds
- \(\text{CostInfInv}^T = \sum_t \sum_{(i,j,l)} (1 + r)^{-t} \text{costInfInv}^T_{i,j,l}(t) \quad (1m) \)

Decision variables:
- Energy flows: \(e_{i,j}(t) \geq 0 \quad (1o) \)
- Energy capacity inv.: \(l_b e_{i,j}(t) \leq e_{\text{in}}_{i,j}(t) \leq u_b e_{i,j}(t) \quad (1p) \)
- Transportation flows: \(f_{i,j,k,m}(t) \geq 0 \quad (1q) \)
- Fleet inv.: \(l_b \text{Fleet}_{i,j,m}(t) \leq \text{Fleet}_{i,j,m}(t) \leq u_b \text{Fleet}_{i,j,m}(t) \quad (1r) \)
- Infrastructure inv.: \(l_b \text{Inf}_{i,j,l}(t) \leq \text{Inf}_{i,j,l}(t) \leq u_b \text{Inf}_{i,j,l}(t) \quad (1s) \)
- Phase angles: \(-\pi \leq \theta_i(t) \leq \pi \quad (1t) \)
NETPLAN formulation

\[
\begin{align*}
\text{min} \quad & \{ \text{CostOp}^E + \text{CostInv}^E + \text{CostOp}^T + \text{CostFleetInv}^T + \text{CostInfInv}^T \} \quad (1a) \\
\text{subject to:} \\
& \text{Meet energy demand at every node} \\
& \sum_i \eta_{(i,j)}(t)e_{(i,j)}(t) - \sum_i e_{(i,j)}(t) = d_j^E(t) + d_j^{ET}(t) \quad (1b) \\
& \text{Energy flow lower and upper bounds} \\
& l_b e_{(i,j)}(t) \leq e_{(i,j)}(t) \leq u_b e_{(i,j)}(t) \Delta t + \sum_{z=0}^t e_{(i,j)}(z) \Delta z \quad (1c) \\
& \text{DC power flow equations} \\
& e_{(i,j)}(t) = b_{(i,j)}(\theta_i(t) - \theta_j(t)), \quad \forall (i, j) \in \mathcal{A}_E^E \quad (1d) \\
& \text{Transportation demand for non-energy commodities} \\
& \sum_{m} f_{(i,j,k,m)}(t) = d_{(i,j,k)}^T(t), \quad k \in K \setminus K_c \quad (1e) \\
& \text{Transportation demand for energy commodities} \\
& \sum_{m} f_{(i,j,k,m)}(t) = \text{heatContent}^k(t) e_{(n_{(i,j,k)},n_{(i,j,k)})}(t), \quad k \in K_c \quad (1f) \\
& \text{Fleet upper bound for transportation flows} \\
& \sum_k f_{(i,j,k,m)}(t) \leq u_b \text{Fleet}_{(i,j,m)}(t) \Delta t + \sum_{z=0}^t \text{FleetInv}_{(i,j,m)}(z) \Delta z \quad (1g) \\
& \text{Infrastructure upper bound for transportation flows} \\
& \sum_k \sum_{m \in M_l} f_{(i,j,k,m)}(t) \leq u_b \text{Inf}_{(i,j,l)}(t) \Delta t + \sum_{z=0}^t \text{Inf}_{(i,j,l)}(z) \Delta z \quad (1h) \\
\end{align*}
\]

where:

\[
\begin{align*}
\text{CostOp}^E &= \sum_t \sum_{(i,j)} (1 + r)^{-t} \text{costOp}_{(i,j)}^E(t) e_{(i,j)}(t) \quad (1i) \\
\text{CostInv}^E &= \sum_t \sum_{(i,j)} (1 + r)^{-t} \text{costInv}_{(i,j)}^E(t) \text{eInv}_{(i,j)}(t) \quad (1j) \\
\text{CostOp}^T &= \sum_t \sum_{(i,j,k,m)} (1 + r)^{-t} \text{costOp}_{(i,j,k,m)}^T(t) f_{(i,j,k,m)}(t) \quad (1k) \\
\text{CostFleetInv}^T &= \sum_t \sum_{(i,j,k,m)} (1 + r)^{-t} \text{costFleetInv}_{(i,j,m)}(t) \text{fleetInv}_{(i,j,m)}(t) \quad (1l) \\
\text{CostInfInv}^T &= \sum_t \sum_{(i,j,l)} (1 + r)^{-t} \text{costInf}_{(i,j,l)}^T(t) \text{infInv}_{(i,j,l)}(t) \quad (1m) \\
\end{align*}
\]

Energy demand from the transportation system

\[
\begin{align*}
d_j^{ET}(t) &= \sum_{(a,b) \in \mathcal{A}_E^T} \sum_m \text{fuelCons}_{(a,b,m)}(t) \sum_k f_{(a,b,k,m)}(t) \quad (1n) \\
\end{align*}
\]

Decision variables:

- Energy flows: \(e_{(i,j)}(t) \geq 0 \) \hspace{1cm} (1o)
- Energy capacity inv.: \(l_b \text{Inv}_{(i,j)}(t) \leq \text{Inv}_{(i,j)}(t) \leq u_b \text{Inv}_{(i,j)}(t) \) \hspace{1cm} (1p)
- Transportation flows: \(f_{(i,j,k,m)} \geq 0 \) \hspace{1cm} (1q)
- Fleet inv.: \(l_b \text{Fleet}_{(i,j,m)}(t) \leq \text{Fleet}_{(i,j,m)}(t) \leq u_b \text{Fleet}_{(i,j,m)}(t) \) \hspace{1cm} (1r)
- Infrastructure inv.: \(l_b \text{Inf}_{(i,j,l)}(t) \leq \text{Inf}_{(i,j,l)}(t) \leq u_b \text{Inf}_{(i,j,l)}(t) \) \hspace{1cm} (1s)
- Phase angles: \(-\pi \leq \theta_i(t) \leq \pi\) \hspace{1cm} (1t)

- \textbf{CostOp}^E and \textbf{CostInv}^E
- \textbf{CostOp}^T
- \textbf{CostFleetInv}^T
- \textbf{CostInfInv}^T
The tractive energy per mile that is provided by the battery in charge-depleting mode (h_e) is a fraction (ξ) of total tractive energy per mile (h_{tr}): $h_e = \xi h_{tr}$.

Source: M. Duoba, 2005, Argonne National Lab
Assumptions

1. Tractive energy per mile (h_{tr}) is a normal distribution with mean determined by vehicle class as shown below, and standard deviation equal to 10% of its mean.

<table>
<thead>
<tr>
<th>Vehicle Class</th>
<th>Car</th>
<th>Van</th>
<th>SUV</th>
<th>Pickup truck</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(h_{dr})$ (kWh/mile)</td>
<td>0.21</td>
<td>0.33</td>
<td>0.37</td>
<td>0.40</td>
</tr>
</tbody>
</table>

2. Fraction of tractive energy derived from electricity (ξ):

$$f_{\xi}(x) = \begin{cases}
1 & \text{for } 0.2 \leq x < 1, \\
0.2\delta(x-1) & \text{for } x = 1.
\end{cases}$$

3. Charge-depleting range (d): log-normal distribution function with expected value and standard deviation equal to (40,10) and (70,20).

4. η is assumed to be constant and equal to 0.672.
Charging scenarios

Two uncontrolled charging scenarios are simulated:

(A) charging any time the vehicle is parked at home
(B) “opportunistic” charging at any location (home, shopping mall, work, etc.)

Typical Charging Circuits

<table>
<thead>
<tr>
<th>Charging circuit</th>
<th>Charger size (kW)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 V, 15 A (Level 1)</td>
<td>1.4</td>
<td>1/3</td>
</tr>
<tr>
<td>120 V, 20 A (Level 1)</td>
<td>2</td>
<td>1/3</td>
</tr>
<tr>
<td>240 V, 30 A (Level 2)</td>
<td>6</td>
<td>1/3</td>
</tr>
</tbody>
</table>
Simulation with example data

The 2009 NHTS collects information on the travel behavior of a national representative sample of U.S. households, such as mode of transportation, trip origin and purpose, and trip distance. The survey consists of 150,147 households and 294,408 Light-Duty Vehicles (LDVs).

Data Example from the 2009 NHTS

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Origin/purpose</th>
<th>Start time</th>
<th>Destination/purpose</th>
<th>End time</th>
<th>Trip miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veh1</td>
<td>Car</td>
<td>Home</td>
<td>07:30</td>
<td>Work</td>
<td>07:40</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Work</td>
<td>16:30</td>
<td>Home</td>
<td>16:40</td>
<td>2</td>
</tr>
<tr>
<td>Veh2</td>
<td>SUV</td>
<td>Home</td>
<td>07:30</td>
<td>Work</td>
<td>07:45</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Work</td>
<td>17:30</td>
<td>Home</td>
<td>17:45</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Home</td>
<td>19:20</td>
<td>Shopping</td>
<td>19:35</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shopping</td>
<td>21:10</td>
<td>Home</td>
<td>21:25</td>
<td>4</td>
</tr>
</tbody>
</table>

Veh 1 in Scenario (A) with 2-kW charger

Veh 2 in Scenario (B) with mixed chargers
Modeling methods

- the interdependency between the charge-depleting range (CDR) and the travel pattern
- the number of new sale light-duty vehicles \(N^{\text{sale}}_{LV}(t) \), where \(LV \in \{CV, HEV, d_1, d_2, \ldots, d_n\} \) as decision variables

Four cases: 0.0, 0.1, 1.0, 1.1
Model 0.0

\[
\text{min } \{ \text{CostOp}^E + \text{CostInv}^E + \text{CostOp}^T + \text{CostFleetInv}^T + \text{CostInfInv}^T \} \\
\text{subject to:}
\]

Meet energy demand at every node
\[
\sum_i \eta_{i,j}(t)e_{i,j}(t) - \sum_i e_{i,j}(t) = d_j^E(t) + d_j^{ET}(t)
\] (1a)

Energy flow lower and upper bounds
\[
lb_{i,j}(t) \leq e_{i,j}(t) \leq ub_{i,j}(t) \Delta t + \sum_{z=0}^t e_{i,j}(z) \Delta z
\] (1b)

Phase angles
\[
-\pi \leq \theta_i(t) \leq \pi
\] (1c)

DC power flow equations
\[
e_{i,j}(t) = b_{i,j}(\theta_i(t) - \theta_j(t)), \quad \forall (i,j) \in A^\text{D}
\] (1d)

Transportation demand for non-energy commodities
\[
\sum_m f_{i,j,k,m}(t) = d_{i,j,k}(t), \quad k \in K \setminus K_c
\] (1e)

Transportation demand for energy commodities
\[
\sum_m f_{i,j,k,m}(t) = \text{heatContent}_{i,k}(t) e_{i,j}(t), \quad k \in K_c
\] (1f)

Fleet upper bound for transportation flows
\[
\sum_k f_{i,j,k,m}(t) \leq \text{ubFl}_{i,j,m}(t) \Delta t + \sum_{z=0}^t \text{Inf}_{i,j}(z) \Delta z
\] (1g)

Infrastructure upper bound for transportation flows
\[
\sum_k \sum_{m \in M_j} f_{i,j,k,m}(t) \leq \text{ubInf}_{i,j,t}(t) \Delta t + \sum_{z=0}^t \text{inf}_{i,j}(z) \Delta z
\] (1h)

where:

\[
\text{CostOp}^E = \sum_t \sum_{(i,j)} (1 + r)^{-t} \text{costOp}^E_{i,j}(t) e_{i,j}(t)
\] (1i)

\[
\text{CostInv}^E = \sum_t \sum_{(i,j)} (1 + r)^{-t} \text{costInv}^E_{i,j}(t) e_{i,j}(t)
\] (1j)

\[
\text{CostOp}^T = \sum_t \sum_{(i,j,k,m)} (1 + r)^{-t} \text{costOp}^T_{i,j,k,m}(t) f_{i,j,k,m}(t)
\] (1k)

\[
\text{CostFleetInv}^T = \sum_t \sum_{(i,j,k,m)} (1 + r)^{-t} \text{costFleetInv}^T_{i,j,k,m}(t) \text{fleet}_{i,j,k,m}(t)
\] (1l)

\[
\text{CostInfInv}^T = \sum_t \sum_{(i,j,t)} (1 + r)^{-t} \text{costInfInv}^T_{i,j,t}(t) \text{inf}_{i,j}(t)
\] (1m)

Energy demand from the transportation system
\[
\text{d}_{j}^{ET}(t) = \sum_{(a,b) \in A^G_j} \sum_{m \in M_j} \text{fuelCost}_{i, a,b,m}(t) \sum_k f_{i,j,k,m}(t) + d_{j}^{ET}(t)
\] (1n)

Decision variables:

Energy flows
\[
e_{i,j}(t) \geq 0
\] (1o)

Energy capacity inv.
\[
\text{lbFl}_{i,j}(t) \leq \text{Fl}_{i,j}(t) \leq \text{ubFl}_{i,j}(t)
\] (1p)

Transportation flows
\[
f_{i,j,k,m}(t) \geq 0
\] (1q)

Fleet inv.
\[
\text{lbFl}_{i,j,k,m}(t) \leq \text{Fl}_{i,j,k,m}(t) \leq \text{ubFl}_{i,j,k,m}(t)
\] (1r)

Infrastructure inv.
\[
\text{lbFl}_{i,j,t}(t) \leq \text{Fl}_{i,j,t}(t) \leq \text{ubFl}_{i,j,t}(t)
\] (1s)

Phase angles
\[
-\pi \leq \theta_i(t) \leq \pi
\] (1t)
Model 0.0

\[
\min \left\{ \text{CostOp}^E + \text{CostInv}^E + \text{CostOp}^T + \text{CostFleetInv}^T + \text{CostInfInv}^T \right\} \quad (1a)
\]

subject to:

Meet energy demand at every node

\[
\sum_i \eta_{i,j}(t) e_{i,j}(t) - \sum_i e_{i,j}(t) = d_j^E(t) + d_j^{ET}(t) \quad (1b)
\]

Energy flow lower and upper bounds

\[
lbe_{i,j}(t) \leq e_{i,j}(t) \leq ube_{i,j}(t) \Delta t + \sum_{z=0}^t \Delta z \quad (1c)
\]

DC power flow equations

\[
e_{i,j}(t) = b_{i,j} \left(\theta_i(t) - \theta_j(t) \right), \quad \forall (i, j) \in A^E_{DC} \quad (1d)
\]

Transportation demand for non-energy commodities

\[
\sum_m f_{i,j,k,m}(t) = d_{i,j,k}(t), \quad k \in K \smallsetminus K_c \quad (1e)
\]

Transportation demand for energy commodities

\[
\sum_m f_{i,j,k,m}(t) = \text{heatContent}_k^{-1}(t) e_{a_{i,j},b_{i,j}}(t), \quad k \in K_c \quad (1f)
\]

Fleet upper bound for transportation flows

\[
\sum_k f_{i,j,k,m}(t) \leq ubFleet_{i,j,m}(t) \Delta t + \sum_{z=0}^t \text{fleetInv}_{i,j,m}(z) \Delta z \quad (1g)
\]

Infrastructure upper bound for transportation flows

\[
\sum_{k} \sum_{m \in M_t} f_{i,j,k,m}(t) \leq ubInf_{i,j,t}(t) \Delta t + \sum_{z=0}^t \text{infInv}_{i,j,t}(z) \Delta z \quad (1h)
\]

\[
N^\text{sale}_{CV}(t), N^\text{sale}_{HEV}(t), N^\text{sale}_{PEV}(t), N^\text{sale}_{d}(t) = N^\text{sale}_{PEV}(t) P_d(d = d)
\]

\[
\text{CostFleetInv}^TP_{LV} = \sum_t (1 + r)^{-t} \sum_{LV} \text{vehCost}(t, LV) N^\text{sale}_{LV}(t), \quad \text{where} \ LV \in \{CV, HEV, d_1, d_2, \ldots, d_n\}
\]

\[
d_j^{ETP_{LV}}(t) = E(t) \sum_{LV} N^\text{cum}_{LV}(j, t), \quad \text{where} \ N^\text{cum}_{LV}(j, t) = N^\text{cum}_{LV}(j, t-1) - s_j N^\text{sale}_{LV}(t - T_{LV}) + s_j N^\text{sale}_{LV}(t)
\]

where:

\[
\text{CostOp}^E = \sum_t \sum_{(i,j)} (1 + r)^{-t} \text{costOp}_{i,j}^E(t) e_{i,j}(t) \quad (1i)
\]

\[
\text{CostInv}^E = \sum_t \sum_{(i,j)} (1 + r)^{-t} \text{costInv}_{i,j}^E(t) e_{i,j}(t) \quad (1j)
\]

\[
\text{CostOp}^T = \sum_t \sum_{(i,j,k,m)} (1 + r)^{-t} \text{costOp}_{i,j,k,m}^T(t) f_{i,j,k,m}(t) \quad (1k)
\]

\[
\text{CostFleetInv}^T = \sum_t \sum_{(i,j,m)} (1 + r)^{-t} \text{costFleetInv}_{i,j,m}(t) fleetInv_{i,j,m}(t) \quad (1l)
\]

\[
\text{CostFleetInv}^T = \sum_t \sum_{(i,j,l)} (1 + r)^{-t} \text{costFleetInv}_{i,j,l}(t) infInv_{i,j,l}(t) \quad (1m)
\]

Energy demand from the transportation system

\[
d_j^{ET}(t) = \sum_{(a,b) \in A^T_m} \sum_{m \in M_t} \text{fuelCons}_{a,b,m}(t) \sum_k f_{a,b,k,m}(t) + d_j^{ETP_{LV}}(t) \quad (1n)
\]

Decision variables:

Energy flows: \(e_{i,j}(t) \geq 0 \) \quad (1o)

Energy capacity inv.: \(lbe_{i,j}(t) \leq e_{i,j}(t) \leq ube_{i,j}(t) \) \quad (1p)

Transportation flows: \(f_{i,j,k,m}(t) \geq 0 \) \quad (1q)

Fleet inv.: \(ubFleet_{i,j,m}(t) \leq fleetInv_{i,j,m}(t) \leq ubFleet_{i,j,m}(t) \) \quad (1r)

Infrastructure inv.: \(ubInf_{i,j,m}(t) \leq infInv_{i,j,m}(t) \leq ubInf_{i,j,m}(t) \) \quad (1s)

Phase angles: \(-\pi \leq \theta_i(t) \leq \pi \) \quad (1t)
Model 0.1

\[\text{min} \ \{ \text{CostOp}^E + \text{CostInv}^E + \text{CostOp}^T + \text{CostFleetInv}^T + \text{CostInfInv}^T \} \] (1a)

subject to:

1. Meet energy demand at every node
 \[\sum_i \eta(i,j)(t) e(i,j)(t) - \sum_i e(j,i)(t) = d_j^E(t) + d_j^{ET}(t) \] (1b)

2. Energy flow lower and upper bounds
 \[lbe(i,j)(t) \leq e(i,j)(t) \leq ube(i,j)(t) \Delta t + \sum_{z=0}^t eInv(i,j)(z) \Delta z \] (1c)

3. DC power flow equations
 \[e(i,j)(t) = b(i,j) \left(\theta_i(t) - \theta_j(t) \right), \quad \forall (i,j) \in A^{EC}_C \] (1d)

4. Transportation demand for non-energy commodities
 \[\sum_l f(i,j,k,m)(l) = d_{i,j,k}^T(l), \quad k \in \mathcal{K} \backslash \mathcal{K}_C \] (1e)

5. Transportation demand for energy commodities
 \[\sum_m f(i,j,k,m)(m) = \text{heatContent}^E_k^{-1}(t) e(i,j,m)(k), \quad k \in \mathcal{K}_C \] (1f)

6. Fleet upper bound for transportation flows
 \[\sum_k f(i,j,k,m)(k) \leq ubFleet(i,j,m)(t) \Delta t + \sum_{z=0}^t \text{FleetInv}(i,j,m)(z) \Delta z \] (1g)

7. Infrastructure upper bound for transportation flows
 \[\sum_k f(i,j,k,m)(k) \leq ubInf(i,j,m)(t) \Delta t + \sum_{z=0}^t \text{InfInv}(i,j,m)(z) \Delta z \] (1h)

8. LDV sales
 \[\sum_{LV} N_{\text{sale}}^{\text{LV}}(t) = N_{\text{sale}}(t), \quad \text{where} \ LV \in \{ \text{CV}, \ HEV, d_1, d_2, \ldots, d_n \} \]

where:

\[\text{CostOp}^E = \sum_{(i,j)} \sum_t (1+r)^{-t} \text{costOp}^E_{i,j}(t) e(i,j)(t) \] (1i)

\[\text{CostInv}^E = \sum_{(i,j)} \sum_t (1+r)^{-t} \text{costInv}^E_{i,j}(t) eInv(i,j)(t) \] (1j)

\[\text{CostOp}^T = \sum_{(i,j,k,m)} \sum_t (1+r)^{-t} \text{costOp}^T_{i,j,k,m}(t) f(i,j,k,m)(t) \] (1k)

\[\text{CostFleetInv}^T = \sum_{(i,j,m)} \sum_t (1+r)^{-t} \text{costFleetInv}^T_{i,j,m}(t) \text{FleetInv}(i,j,m)(t) \] (1l)

\[\text{CostInfInv}^T = \sum_{(i,j,l)} \sum_t (1+r)^{-t} \text{costInfInv}^T_{i,j,l}(t) \text{InfInv}(i,j,l)(t) \] (1m)

Energy demand from the transportation system

\[N_{\text{LV}}^{\text{cum}}(j,t) = N_{\text{LV}}^{\text{cum}}(j,t-1) - s_j N_{\text{LV}}^{\text{sale}}(t - T_{\text{LV}}) + s_j N_{\text{LV}}^{\text{sale}}(t) \] (1n)

\[E^T_{j}(t) = \sum_{(a,b) \in A_T} \sum_{m \in M_{j}} \text{fuelCons}_{(a,b,m)}(t) f(a,b,k,m)(t) + \sum_{LV} E_{LV}(t) N_{\text{LV}}^{\text{cum}}(j,t) \]

Decision variables:

Energy flows:

\[e(i,j)(t) \geq 0 \] (1o)

Energy capacity inv.:

\[lbeInv(i,j)(t) \leq eInv(i,j)(t) \leq ubeInv(i,j)(t) \] (1p)

Transportation flows:

\[f(i,j,k,m) \geq 0 \] (1q)

Fleet inv.:

\[lbFleetInv(i,j,m)(t) \leq \text{FleetInv}(i,j,m)(t) \leq ubFleetInv(i,j,m)(t) \] (1r)

Infrastructure inv.:

\[lbInfInv(i,j,l)(t) \leq \text{InfInv}(i,j,l)(t) \leq ubInfInv(i,j,l)(t) \] (1s)

Phase angles:

\[\theta_i(t) \leq \pi \] (1t)

LDV sale:

\[N_{\text{sale}}^{\text{LV}}(t) \geq 0, \quad \text{where} \ LV \in \{ \text{CV}, \ HEV, d_1, d_2, \ldots, d_n \} \]
min \{ \text{CostOp}^E + \text{CostInv}^E + \text{CostOp}^T + \text{CostFleetInv}^T + \text{CostInfInv}^T \}

subject to:

Meet energy demand at every node
\[\sum_j e(i,j(t)) - \sum_j e(i,j(t)) = d^E_j(t) + d^{ET}_j(t) \]

Energy flow lower and upper bounds
\[lbv(i,j)(t) \leq e(i,j)(t) \leq ubv(i,j)(t) \Delta t + \sum_{z=0}^t e(v,i,j)(z) \Delta z \]

DC power flow equations
\[e(i,j)(t) = b(i,j)(t - \theta_j(t)), \quad \forall(i,j) \in \mathcal{A}_{DC} \]

Transportation demand for non-energy commodities
\[\sum_m f(i,j,k,m)(t) = d^{TP}_{i,j,k}(t), \quad k \in \mathcal{K} \setminus \mathcal{K}_c \]

Transportation demand for energy commodities
\[\sum_m f(i,j,k,m)(t) = \text{HeatContent}^{TP}_{k}(t) e(n_{i,k},n_{j,k})(t), \quad k \in \mathcal{K}_c \]

Fleet upper bound for transportation flows
\[\sum_k f(i,j,k,m)(t) \leq ubFleet(i,j,m)(t) \Delta t + \sum_{z=0}^t \text{fleetInv}(i,j,m)(z) \Delta z \]

Infrastructure upper bound for transportation flows
\[\sum_k \sum_{m \in \mathcal{M}_t} f(i,j,k,m)(t) \leq ubInf(i,j,t)(t) \Delta t + \sum_{z=0}^t \text{infInv}(i,j,t)(z) \Delta z \]

where:
\[\text{CostOp}^E = \sum_t \sum_{(i,j)} (1 + r)^{-t} \text{costOp}^E_{i,j}(t) e(i,j)(t) \]
\[\text{CostInv}^E = \sum_t \sum_{(i,j)} (1 + r)^{-t} \text{costInv}_{i,j}(t) e(i,j)(t) \]
\[\text{CostOp}^T = \sum_t \sum_{(i,j,m)} (1 + r)^{-t} \text{costOp}_{i,j,m}(t) f(i,j,m)(t) \]
\[\text{CostFleetInv}^T = \sum_t \sum_{(i,j,m)} (1 + r)^{-t} \text{costFleetInv}_{i,j,m}(t) \text{fleetInv}_{i,j,m}(t) \]
\[+ \text{CostFleetInv}^{TPLV} \]
\[\text{CostInfInv}^T = \sum_t \sum_{(i,j,t)} (1 + r)^{-t} \text{costInfInv}_{i,j,t}(t) \text{infInv}_{i,j,t}(t) \]

Energy demand from the transportation system
\[d^{ET}_j(t) = \sum_{(a,b) \in \mathcal{A}_{j}} \sum_{m \in \mathcal{M}_j} \text{fuelCons}_{i,j,m} \sum_{k \in \mathcal{K}} f(i,j,k,m)(t) + d^{ETPLV}_j(t) \]

Decision variables:

Energy flows:
\[e(i,j)(t) \geq 0 \]

Energy capacity inv.: \[lbv(i,j,t) \leq e(i,j,t) \leq ubv(i,j,t) \]

Transportation flows:
\[f(i,j,k,m) \geq 0 \]

Fleet inv.: \[lbFleet(i,j,m) \leq fleetInv(i,j,m) \leq ubFleet(i,j,m) \]

Infrastructure inv.: \[lbInf(i,j,t) \leq infInv(i,j,t) \leq ubInf(i,j,t) \]

Phase angles:
\[-\pi \leq \theta_i(t) \leq \pi \]
Model 1.0

It is assumed that for “most” vehicles in NHTS, the VMT happened on the assigned travel day “somehow” reflects their travel pattern on everyday basis.

\[
 f_{m,d}(u,v) = f_{d|m}(v|u)f_m(u) .
\]

\[
 f_d(x) = \int_0^\infty f_{m,d}(u,x) \, du = \int_0^\infty f_{d|m}(x|u)f_m(u) \, du .
\]
Model 1. $\frac{1}{2}$

\[
\begin{align*}
\min & \{ \text{CostOp}^E + \text{CostInv}^E + \text{CostOp}^T + \text{CostFleetInv}^T + \text{CostInfInv}^T \} \quad (1a) \\
\text{subject to:} & \\
\text{Meet energy demand at every node} & \sum_i \eta_{i,j}(t)e_{i,j}(t) - \sum_i e_{j,i}(t) = d^E_j(t) + d^{ET}_j(t) \\
\text{Energy flow lower and upper bounds} & lbe_{i,j}(t) \leq e_{i,j}(t) \leq ube_{i,j}(t) \Delta t + \sum_{z=0}^t e_{i,j}(z) \Delta z \\
\text{DC power flow equations} & e_{i,j}(t) = b_{i,j}\left(\theta_i(t) - \theta_j(t)\right), \quad \forall (i, j) \in \mathcal{A}_{DC}^E \\
\text{Transportation demand for non-energy commodities} & \sum_k f_{i,j,k,m}(t) = d^T_{i,j,k}(t), \quad k \in \mathcal{K} \setminus \mathcal{K}_c \\
\text{Transportation demand for energy commodities} & \sum_k f_{i,j,k,m}(t) = \text{heatContent}_{i,k}(t)e_{i,j}(t), \quad k \in \mathcal{K}_c \\
\text{Fleet upper bound for transportation flows} & \sum_k f_{i,j,k,m}(t) \leq ubFleet_{i,j,k,m}(t) \Delta t + \sum_{z=0}^t \text{fleetrInv}_{i,j,k,m}(z) \Delta z \\
\text{Infrastructure upper bound for transportation flows} & \sum_k f_{i,j,k,m}(t) \leq ubInf_{i,j,k,m}(t) \Delta t + \sum_{z=0}^t \text{infInv}_{i,j,k,m}(z) \Delta z \\
\text{LDV sales} & \sum_{LV} N_{\text{sale}}^{LV}(t) = N_{\text{sale}}(t), \text{where } LV \in \{\text{CV, HEV, PEV}\} \\
\end{align*}
\]

where:

\[
\begin{align*}
\text{CostOp}^E & = \sum_{t \in \mathcal{T}_{i,j}} (1 + r)^{-t} \text{costOp}_{E}^E(t) e_{i,j}(t) \\
\text{CostInv}^E & = \sum_{t \in \mathcal{T}_{i,j}} (1 + r)^{-t} \text{costInv}_{E}^E(t) e_{i,j}(t) \\
\text{CostOp}^T & = \sum_{t \in \mathcal{T}_{i,j,k,m}} (1 + r)^{-t} \text{costOp}_{T}^E(t) f_{i,j,k,m}(t) \\
\text{CostFleetInv}^T & = \sum_{t \in \mathcal{T}_{i,j,k,m}} (1 + r)^{-t} \text{costFleetInv}_{T}^E(t) f_{i,j,k,m}(t) + \sum_{t \in \mathcal{T}_{LV}} \text{vehCost}(t, LV) N_{\text{sale}}^{LV}(t) \\
\text{CostInfInv}^T & = \sum_{t \in \mathcal{T}_{i,j}} (1 + r)^{-t} \text{costInfInv}_{E}^E(t) \text{infInv}_{i,j}(t) \\
\end{align*}
\]

Energy demand from the transportation system

\[
\begin{align*}
N_{\text{LV}}^{\text{cum}}(j, t) & = N_{\text{LV}}^{\text{cum}}(j, t-1) - s_j N_{\text{LV}}^{\text{sale}}(t - T_{\text{LV}}) + s_j N_{\text{LV}}^{\text{sale}}(t) \\
\text{fleetrInv}_{i,j}(t) & = \sum_{(a,b) \in \mathcal{A}_{T}} \sum_{m \in \mathcal{M}_j} \text{fuelCons}_{(a,b,m)}(t) \sum_{k \in \mathcal{K}} f_{a,b,k,m}(t) + \sum_{LV} E_{\text{LV}}(t) N_{\text{LV}}^{\text{cum}}(j, t) \\
\end{align*}
\]

Decision variables:

Energy flows: $e_{i,j}(t) \geq 0$ (10)

Energy capacity inv.: $lbe_{i,j}(t) \leq e_{i,j}(t) \leq ube_{i,j}(t)$ (1p)

Transportation flows: $f_{i,j,k,m}(t) \geq 0$ (1q)

Fleet inv.: $lbFleet_{i,j,k,m}(t) \leq flFleet_{i,j,k,m}(t) \leq ubFleet_{i,j,k,m}(t)$ (1r)

Infrastructure inv.: $lbInf_{i,j}(t) \leq inf_{i,j}(t) \leq ubInf_{i,j}(t)$ (1s)

Phase angles: $-\pi \leq \theta_i(t) \leq \pi$ (1t)

LDV sale: $N_{\text{sale}}^{\text{sale}}(t) \geq 0$, where $LV \in \{\text{CV, HEV, PEV}\}$
Discussion

- Forecast total light-duty vehicle sale vs. life time
- Light-duty PEV travel pattern is the same as LDV
- LDV travel pattern will not be affected by decisions of other passenger transportation mode, e.g., airplane, train, etc.
- Distribution of new LDV among states